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Path Tracking Control of Autonomous Vehicles
Subject to Deception Attacks via a Learning-Based

Event-Triggered Mechanism
Zhou Gu , Member, IEEE, Tingting Yin , and Zhengtao Ding , Senior Member, IEEE

Abstract— This article investigates the problem of event-
triggered secure path tracking control of autonomous ground
vehicles (AGVs) under deception attacks. To relieve the burden
of the shareable vehicle communication network and to improve
the tracking performance in the presence of deception attacks,
a learning-based event-triggered mechanism (ETM) is proposed.
Different from existing ETMs, the triggering threshold of the pro-
posed mechanism can be dynamically adjusted with conditions
of the latest vehicle state. Each vehicle in this study is deemed
as an agent, under which a novel control strategy is developed
for these autonomous agents with deception attacks. With the
assistance of Lyapunov stability theory, sufficient conditions are
obtained to guarantee the stability and stabilization of the overall
system. Finally, a simulation example is provided to demonstrate
the effectiveness of the proposed theoretical results.

Index Terms— Autonomous ground vehicles (AGVs), deception
attacks, learning-based event-triggered control, path tracking.

I. INTRODUCTION

AUTONOMOUS ground vehicles (AGVs) have gained a
great popularity in society over the past decade owing

to the technological innovation and security enhancement of
available vehicles. The main goal of AGVs is to reduce
energy consumption and travel costs, while improving road
safety. Designing an appropriate control strategy for AGVs
including information transmission mechanism among AGVs
plays a critical role. To achieve this goal, in recent years,
a remarkable number of research efforts have been dedicated to
develop different control strategies for various study missions
[1]–[3]. For example, Hu et al. [3] proposed a lane-keeping
control strategy for the autonomous vehicles with prescribed
performance considering the rollover prevention and input
saturation. The path tracking control problem, as one of the
foundational researches on AGVs, has also attracted great
attention during the past years [4]. In [5], the authors focused
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on the problem of robust H∞ path following control for AGVs
with time delay and data dropout. Hu et al. [6] developed
a control strategy on path following of AGVs with limited
output. In [7], a composite nonlinear feedback control rule was
applied for AGV path following issue. Yu et al. [8] studied
the cooperative path planning of target tracking for AGVs
in urban environments. In [9], the problem of accelerated
lane-changing trajectory planning of automated vehicles with
vehicle-to-vehicle (V2V) collaboration was studied. On the
basis of the existing research, it is important and challenging
to further improve the contradiction between vehicles commu-
nication and control performance for networked AGV control
design. To address this problem, machine learning methods
were applied in AGV study, see [10]–[12], and the references
therein. However, there is still much room for researches
to get better results. This is our main motivation to study
the learning-based event-triggered path tracking control for
networked AGVs in current research.

For AGVs, information interaction is generally transmit-
ted over a wireless network. Therefore, the network com-
munication is essential for vehicle-coordinated control and
scheduling. However, it also brings a lot of problems, such as
time-delay, packet loss, and uncertainty, which may cause the
system performance deterioration or even instability [13]–[16].
It consequently becomes a hot research topic on the issue of
improving the network communication resources’ utilization
while maintaining the system performance [17]–[20]. Time-
triggered mechanism (TTM) with periodic sampling period is
widely utilized in the traditional networked control systems.
Under such a mechanism, the data sampling and releasing are
implemented at a fixed period. The worst condition should be
considered before determining the fixed period. Therefore, the
use of the TTM seems to be a good choice in terms of getting
a satisfactory control performance and convenience of imple-
mentation. It needs to be pointed out that this mechanism may
lead to the waste of communication, computation resources,
and network congestion due to the release of a large amount
of redundant data into the network. Numerous researchers
devote themselves into developing more effective control strat-
egy to deal with this problem [21]–[24] and the references
therein. Yue et al. [23] first proposed the discrete ETM under
which the periodic measured data were supervised at discrete
instants and the sampled signal was transmitted only when
the event-triggering condition was violated. Recently, a lot of
achievements on the discrete ETM have been available. For
example, the ETM in [23] was extended to the memory-based
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triggered mechanism [25], [26] and the adaptive ETM [27].
Under the adaptive ETM, the event-triggering condition is
updated with the threshold variation, so as to better adapt
to the requirements of control performance. For this purpose,
the authors, in [27], proposed an adaptive ETM to study the
problem of tracking control. Based on such a transmission
mechanism, the velocity-based robust fault-tolerant automatic
steering control for AGVs was investigated in [28].

AGV signal is transmitted via communication network,
which is vulnerable to be attacked by malicious adversaries,
especially for the shared communication network, thereby
affecting the path tracking performance. In the past decades,
the network security problem has become a hot topic of
research. A great number of research results on cyberattacks
have been available in recent years [29], [30]. Cyberattacks,
discussed in the existing literature, are mainly classified into
deception attacks, replay attacks, and denial-of-service (DoS)
attacks. Adversaries launch deception attacks by wrecking
the integrity of data packets. The DoS attack aims to block
the data transmission for the purpose of compromising
the availability of resources, thereby degrading the system
performance. In [31], the authors studied a secure impulsive
synchronization control of multi-agent systems considering
the influence of deception attacks. Event-based secure
leader-following consensus control for multi-agent systems
subject to DoS attacks was investigated in [32]. However,
few literature can be found on the issue of networked secure
path tracking control of AGVs.

In this study, the issue of path tracking control is inves-
tigated for learning-based event-triggered AGVs subject to
deception attacks. The contributions of this article can be
summarized as follows:

1) A learning-based ETM is proposed to cope with limited
communication and computation resources, where the
triggering threshold can be adaptively adjusted accord-
ing to the states of the vehicle and its adjacent vehicles
via a vehicle communication network. Compared to the
ETM with a prescribed constant threshold [23], the
proposed learning-based ETM can dynamically adjust
data releasing rate so as to get a satisfactory tracking
performance when the networked AGVs are subjected
to deception attacks.

2) A novel control strategy is developed to implement the
path tracking control and ensures the stability of the
AGVs with deception attacks. In the study, each vehicle
of the discussed system is modeled as an agent. Different
from the existing literature on AGVs [1], [4], the influ-
ence of deception attacks on the data transmission via
a vehicle communication network is considered in this
article, which is closer to the actual situation in practice.
The feasibility of the proposed theoretical results has
been verified through a simulation example.

The remainder of this article is organized as follows.
Section II gives the problem formulation and AGV modeling.
Main results of the learning-based event-triggered control for
AGVs subject to deception attacks are presented in Section III.
A simulation example is given in Section IV to demonstrate

Fig. 1. Diagram of path tracking control.

Fig. 2. Two-DoFs model of the vehicle.

the usefulness of theoretical results. Section V concludes the
work of this article.

Notation: Rn and Rn×m denote the n-dimensional Euclidean
space and the set of n × m real matrices, respectively; I and
IN indicate the identity matrix with appropriate dimension
and the identity matrix with N-dimensional, respectively; the
superscript T stands for matrix transposition; X > 0 denotes
that the matrix X is real symmetric positive definite. ∗ in a
symmetric matrix stands for the entries implied by symmetry.

II. PROBLEM FORMULATION AND AGV MODELING

In this section, we first present the diagram of path tracking
control of AGVs with a learning-based ETM, which is shown
in Fig. 1. In what follows, the analysis and modeling for
path tracking of vehicles, the learning-based ETM, deception
attacks, and control strategy are presented, respectively.

A. Modeling of Path Tracking for Vehicles

In this study, we simplify the vehicle system model to a
sports bike model, which is a common approximation method
for AGV motion planning. Using this method, the vehicle
analysis becomes more convenient, and the control law can be
designed more easily through geometric methods. As shown
in Fig. 2, two degree-of-freedoms’ (DoFs) vehicle model is
utilized in this research for the controller design. The symbols
in Fig. 2 are given in Table I.

For the purpose of facilitating the analysis and modeling for
AGVs, we present the following assumptions.

Assumption 1: It is assumed that 1) the magnitude of slip
angle is minor; 2) the front-wheel angle is small and tires
works in the linear area; 3) vx is a constant; 4) ϕ(ς) is
unknown when the GPS signal is inaccessible; and 5) the
heading error is small.

Remark 1: Based on the above assumptions, fruitful results
on AGVs have been obtained, see [1], [5]–[7], and references
therein. This article mainly focuses on the problem of path
tracking control of networked AGVs.
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TABLE I

MEANINGS OF THE SYMBOLS IN FIGS. 1 AND 2

From Assumption 1, the vehicle dynamics can be expressed
as [6] ⎧⎨⎨

⎨⎩
vxwz + v̇y = 1

m
(Fy f + Fyr )

ẇz = 1

Iz
(l f Fy f − lr Fyr )

(1)

where Iz is the yaw inertia moment, m denotes the vehicle
mass. l f and lr denote the length of center gravity of vehi-
cle (CG) to the front axles and rear axles, respectively. Fy f

and Fyr represent the generalized lateral tire forces of front
and rear axles, respectively, which can be represented as

Fy f = C f α f , Fyr = Crαr (2)

where C f (Cr ) is the front (rear) cornering stiffness, and
the slip angle of the front (rear) wheel α f (αr ) satisfies the
following equations:⎧⎨⎨

⎨⎩
α f = δ f − l fwz

vx
− φ

αr = lrwz

vx
− φ

(3)

where δ f denotes the steering angle of front wheels, and φ =
(vy/vx). Then, we can get φ̇ = (v̇y/vx).

Additionally, the path tracking model shown in Fig. 1 can
be presented as follows:�

ė = vxψ + vy

ψ̇ = wz − ϕ(ς)vx .
(4)

Combining (1)–(4), one can get the following dynamic of
2-DoFs vehicle:⎧⎨⎨⎨
⎨⎨⎩
ẇzvx = − l2

f C f + l2
r Cr

Iz
wz + l f C f − lr Cr

Iz
vy + l f C f vx

Iz
δ f

v̇yvx =
�

−v2
x − l f C f −lr Cr

m

�
wz − C f + Cr

m
vy + C f vx

m
δ f .

(5)

Define x(t) = 	
wz φ


T
, u(t) = δ f , then the dynamic of

vehicle path tracking can be expressed as

ẋ(t) = Ax(t)+ Bu(t) (6)

where

A =
�

a1 a2

a3 a4

�
, B =

�
b1

b2

�
, a1 = − l2

f C f + l2
r Cr

Izvx

a2 = lr Cr − l f C f

Iz
, a3 = −1 − l f C f − lr Cr

mv2
x

a4 = −C f + Cr

mvx
, b1 = l f C f

Iz
, b2 = C f

mvx
.

B. Modeling of Agent-Based Vehicle Path Tracking

We define a virtual leading vehicle labeled the 0-th agent,
which can be expressed as

ẋ0(t) = Ax0(t)+ E f (x0(t), t) (7)

and the other vehicles are real agents labeled as 1, 2, . . . , N .
The i -th vehicle is described as

ẋi(t) = Axi(t)+ Bui(t)+ E f (xi(t), t) (8)

where f (xi(t), t) is a nonlinear function.
Remark 2: In (7) and (8), the nonlinearity in the analysis

and synthesis of path tracking control of AGVs describes
inaccurate modeling and interference to the AGV.

Remark 3: The kinematic equation of AGVs may be more
complex and diverse in real applications. In this study, each
vehicle with the kinematic equation (8), shown in Fig. 3,
is regarded as an agent. The further consideration for kine-
matics of AGVs will be discussed in the future research.

Suppose the directed topology graph of vehicle commu-
nication is � = (V, E,A), where V = {1, 2, . . . , N} and
E ⊆ {(i, j), i, j ∈ V} stand for the set of nodes and edges,
respectively; A = [ai j ]N×N is a weighted adjacency matrix
with nonnegative elements ai j (i, j ∈ V). An edge ( j, i) ∈ E
represents that the information of vehicle j can be received
by the vehicle i . ai j > 0 means (i, j) ∈ E ; ai j = 0 denotes
(i, j) /∈ E . In the in-degree matrix D = diag{r1, r2, . . . , rN },
ri = 

j∈Ai
ai j for the vehicle i . The Laplacian matrix L of

� is defined as L = D −A. Ai = { j |(i, j) ∈ E} indicates the
set of the neighbor of vehicle i .

C. Learning-Based ETM

To economize the resources of vehicle communication net-
work, a learning-based ETM shown in Fig. 3 is proposed.
Denote the latest transmitting instant by t i

kh, then the next
transmission instant of the vehicle i is given by

t i
k+1h

= t i
kh + min

gi ≥0

�
(gi + 1)h|σi(t)ψ

T
i

�
t i
kh

�
	iψi

�
t i
kh

�
<
μ

2

	
ψT

i

�
t i
kh

�
	i
i (t)+ 
T

i (t)	iψi
�
t i
kh

�
�
(9)

where ψi (t i
kh) = 

Ai
j=1 ai j [xi(t i

kh)−x j(t
j

k h)], 
i(t) = xi(t i
kh)−

xi(t i
kh + gi h), h is a sampling period, and 	i > 0 (i ∈

{1, 2, . . . , N} � J ) is a weighting matrix. Here the sampling
time sequence is denoted as {kh|k ∈ {0, 1, 2, . . .} � N }, and
the transmitting time sequence of the i th vehicle’s sensor node
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Fig. 3. Structure of the learning-based event-triggered tracking control of
the vehicle i with deception attacks.

is represented as {t i
kh|t i

k ∈ N }. The threshold σi (t) satisfies the
following equality:

σ̇i (t) =
�

1

σ 2
i (t)

− σ i
a

σi (t)

�	
ψT

i

�
t i
kh

�
	i
i (t)+ 
T

i (t)	iψi
�
t i
kh

�

(10)

where σ i
a ≥ 1 is introduced, here, to adjust the convergence

rate of σi (t).
Remark 4: It is noted that the previous literatures generally

used the ETM with a constant threshold such as in the
literature [16], [23]. The threshold, in this study, is obtained
as a result of self-learning by considering the adjacent agents’
states and the self-state 
i (t). Therefore, we call this commu-
nication mechanism as a learning-based ETM. The use of the
learning-based ETM (9) can improve the resource utilization
and alleviate the network bandwidth load to a large extent.
In this sense, the learning-based ETM (9) plays an important
role in saving network communication resources in the study
of secure control for AGVs.

Remark 5: In this study, the learning-based ETM (9) is
adopted to economize bandwidth and reduce congestion of
the vehicle communication network, wherein the threshold
can be dynamically adjusted according to the states of the
vehicle i and its adjacent vehicles. It is worth pointing out
that the learning-based control strategy has received extensive
application to the analysis and design of various networked
systems [34]–[36]. Motivated by the mentioned results and
achievements, the learning-based ETM (9) is utilized to inves-
tigate the control problem for AGVs with deception attacks in
this study.

Remark 6: From (10), one can see that when the system
tends to be stable, ψT

i (t
i
kh)	i
i (t) + 
T

i (t)	iψi (t i
kh) → 0,

in such a situation, σi (t) will tend to be a constant. If one
sets σ̇i (t) ≡ 0, the learning-based ETM will degenerate into a
conventional ETM as in [23], [32].

Considering the impact of network, we suppose dtk rep-
resents the network-induced delay of the sampling packet at
instant tkh. Then the time interval [t i

kh +di
tk
, t i

k+1h +di
k+1) can

be divided into dk + 1 subintervals, namely, [t i
kh +di

tk , t i
k+1h +

di
k+1) = ∪dk

gi =0[t i
kh + gi h + di

tk , t i
kh + gi h + h + di

k+1), where
dk is a positive constant similar to the definition in [33].

Define di(t) = t − t i
kh − gi h. One can easily know that

0 < di
tk ≤ di (t) ≤ h + max{di

tk , di
k+1} = h + d̄ � dm .

Then, the state at instant tkh of the vehicle i can be
expressed by

x̃i(t) = 
i (t)+ xi(t − di(t)) (11)

where di(t) ∈ (dn, dm], dn and dm are the lower bound and
upper bound of d(t), respectively.

D. Deception Attacks

In AGVs, the vehicle communication network is suscep-
tible to malicious attacks due to its openness and sharing.
As depicted in Fig. 3, the deception attack is considered in this
study. When the system is under deception attacks, the normal
transmission data will be displaced by the attack signal ζi (t).
A Bernoulli random variable βi(t) is introduced to characterize
the phenomenon of this kind of deception attack. Then, the real
signal that the controller of vehicle j receives from vehicle i
can be presented as

x̂i(t) = βi (t)ζi (t − li(t))+ (1 − βi(t))x̃i(t) (12)

under considering deception attacks, where βi(t) ∈ {0, 1};
x̃i(t) is defined in (11) and ζi(t) is defined in (13). From (12),
one knows that if βi (t) = 1, it implies that deception attacks
occur and the transmitted signal is replaced by ζi(t − li(t));
if βi(t) = 0, it denotes that the network does not suffer from
deception attacks. In this case, x̂i(t) = x̃i(t). The expectation
and mathematical variance of βi(t) is represented as β̄i and
ρ2

i , respectively. li (t) ∈ (0, lm], lm is the upper bound of li (t).
The definition of li (t) is similar to di(t). Here, we assume
that the random variable βi (t) and β j (t) (i �= j ∈ J ) are
independent.

Consider the deception attack signal ζi(t) has the following
format:

ζi(t) = ξi(t)− xi(t) (13)

where ξi (t) satisfies the following sector-like bounded
condition:

(ξi (t)− H xi(t))
T (ξi (t)− H xi(t)) ≤ θ2x T

i (t)xi(t) (14)

where H is a known real matrix and θ ≥ 0 is a known real
constant.

Remark 7: Due to the openness and sharing of the vehi-
cles communication network, many factors can affect the
system performance of networked AGVs, including network-
introduced time-delay, nonlinearity, and uncertainty, especially
for cyberattacks [30]–[32]. Few literature is concerned with
AGVs subject to cyberattacks. However, cyberattacks includ-
ing deception attacks pose a great threat to the system per-
formance since these attacks can block data transmission or
replace transmitted signals. Therefore, this article deals with
the learning-ETM-based path tracking control for networked
AGVs (8) subject to deception attacks (13).

E. Control Strategy

Based on the above analysis, the learning-based event-
triggered control strategy of the i -th vehicle is designed as

ui (t) = �K

⎧⎨
⎩

Ai�
j=1

ai j [x̂ j(t)− x̃i(t)] + ei [x0(t)− x̃i(t)]
⎫⎬
⎭ (15)
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where K is the controller gain to be determined in Section III;
� > 0 denotes the coupling weight of AGVs; ai j stands for the
adjacency element of �; if ei = 1 means that the information
of the leader can be received by the i -th vehicle.

Combining (8), (11), (12), (13), and (15), the overall AGVs
can be written as
ẋi(t)

= Axi(t)+ E f (xi(t), t)

− �B K

⎧⎨
⎩

Ai�
j=1

ai j [xi(t − di (t))− x j(t − d j(t))+ 
i (t)

− 
 j(t)− β j(t)ξ j (t − l j(t))+ β j (t)x j(t−l j(t))

+β j(t)
 j (t)+ β j(t)x j (t − d j(t))]

+ ei [xi(t − di(t))+ 
i (t)− x0(t)]
⎫⎬
⎭. (16)

For the convenience of description, we denote
ηi (t) = xi(t)− x0(t)

x(t) = 	
x T

1 (t), x T
2 (t), . . . , x T

N (t)

T

η(t) = 	
ηT

1 (t), η
T
2 (t), . . . , η

T
N (t)


T


(t) = 	

T

1 (t), 

T
2 (t), . . . , 


T
N (t)


T

β̃(t) = diag{β1(t), β2(t), . . . , βN (t)}
f (x(t), t) = [ f T (x1(t), t), f T (x2(t), t), . . . , f T (xN (t), t)]T

f̃ (x(t), t) = 	
f̃ T
1 (x(t), t), f̃ T

2 (x(t), t), . . . , f̃ T
N (x(t), t)


T

f̃i (x(t), t) = f (xi(t), t) − f (x0(t), t), i = 1, 2, . . . , N

x(t − d(t)) = 	
x T

1 (t − d1(t)), x T
2 (t − d2(t)), . . . ,

x T
N (t − dN (t))


T

x(t − l(t)) = 	
x T

1 (t − l1(t)), x T
2 (t − l2(t)), . . . ,

x T
N (t − lN (t))


T

ξ(t − l(t)) = 	
ξT

1 (t − l1(t)), ξ
T
2 (t − l2(t)), . . . ,

ξT
N (t − lN (t))


T
.

Combining (7) and (16), one can easily obtain that
η̇(t) = (IN ⊗ A)η(t)+ (IN ⊗ E) f̃ (x(t), t)

− �(L ⊗ B K )η(t − d(t))− �β̃(t)(A ⊗ B K )
(t)

+ �[(A ⊗ B K )− (D ⊗ B K )− (D0 ⊗ B K )]
(t)
− �β̃(t)(A ⊗ B K )[x(t − d(t))+ x(t − l(t))]
+ �β̃(t)(A ⊗ B K )ξ(t − l(t)). (17)

Define δ(t) = 	
x T (t) ηT (t)


T
, the system (17) can be

further written as
δ̇(t) = Āδ(t)+ Ē F(x(t), t)+ �B1 K2δ(t − d(t))

+ �B2 K1
(t)+ �β(t)B3 K2[δ(t − d(t))+ δ(t − l(t))]
− �β(t)B4 K1
(t)+ �β(t)B4 K1ξ(t − l(t)) (18)

where

F(x(t), t) =
�

f (x(t), t)
f̃ (x(t), t)

�
, β(t) = diag{β̃(t), β̃(t)}

Ā = diag{IN ⊗ A, IN ⊗ A}
Ē = diag{IN ⊗ E, IN ⊗ E}
L = L + E0, E0 = diag{e1, e2, . . . , eN }

K1 = IN ⊗ K , K2 = I2N ⊗ K

B1 =
�

0 −(L ⊗ B)
0 −(L ⊗ B)

�

B2 =
�
(A ⊗ B)− (D ⊗ B)− (E0 ⊗ B)
(A ⊗ B)− (D ⊗ B)− (E0 ⊗ B)

�

B3 =
�−(A ⊗ B) 0
−(A ⊗ B) 0

�
, B4 =

�A ⊗ B
A ⊗ B

�
.

The main purpose of this article is to develop a novel control
strategy for path tracking of AGVs with deception attacks
under the proposed learning-based ETM (9) to alleviate the
load of the network bandwidth.

III. MAIN RESULTS

In this section, we will present the main results of this article
in the form of two theorems. The following assumption is
introduced to help us obtain the main results.

Assumption 2 [16], [21]: For the nonlinear function f :
R2 → R2, the Lipschitz condition is satisfied, which means
that there exists a scalar ν > 0 such that the following
inequality holds for all x, y ∈ R2

 f (x)− f (y) ≤ νx − y. (19)

Theorem 1: For known scalar β̄i ∈ (0, 1), positive scalars
σ i

a , μ, ν, dn, dm , lm , �, e j , and matrix K , the system (18) is
asymptotically stable in the mean-square sense, if there exist
positive definite matrices Q j , R j , P , 	i (i ∈ J , j = 1, 2, 3),
and matrices N2, N3 with appropriate dimensions such that
the following inequalities hold:

� =

⎡
⎢⎢⎢⎢⎣
�11 ∗ ∗ ∗ ∗
�21 �22 ∗ ∗ ∗
�31 �32 �33 ∗ ∗
�41 �42 �43 �44 ∗
�51 �52 �53 0 �55

⎤
⎥⎥⎥⎥⎦ < 0 (20)

�
R2 ∗
N2 R2

�
> 0,

�
R3 ∗
N3 R3

�
> 0 (21)

where

�11 =
⎡
⎣�1 ∗ ∗

R1 −Q1 − R1 − R2 ∗
�2 R2 + N2 �3

⎤
⎦

�1 = (I2N ⊗ P) Ā + ĀT (I2N ⊗ P)+ Q1 + Q2 + Q3

− R1 − R3, H1 = [I2N 0], H2 = [0 I2N ]
�2 = �K T

2 BT
2 (I2N ⊗ P)+ �K T

2 BT
3 (I2N ⊗ P)

�3 = −2R2 − N2 − NT
2 + 2

μ
H T

1 LT	LH1

�21 =
⎡
⎣ 0 −N2 R2 + N2

�4 0 0
−N3 0 0

⎤
⎦

�4 = �K T
2 BT

3 β̄(I2N ⊗ P)+ R3 + N3

�22 =
⎡
⎣−Q2 − R2 ∗ ∗

0 �5 ∗
0 R3 + N3 −Q3 − R3

⎤
⎦

�5 = −2R3 − N3 − NT
3 + θ2 H T

1 (IN ⊗ P)H1

+ H T
1 (IN ⊗ H T P H )H1
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�31 =

⎡
⎢⎢⎣

H2 ĒT (I2N ⊗ P) 0 0
�6 −σa	LH1 0

�K T
1 BT

4 β̄(I2N ⊗ P) 0 0
νH2 0 0

⎤
⎥⎥⎦

�6 = �K T
1 BT

2 (I2N ⊗ P) − �K T
1 BT

4 β̄(I2N ⊗ P)

σa = diag
�

I2 ⊗ σ 1
a , I2 ⊗ σ 2

a , . . . , I2 ⊗ σ N
a

�

�32 =

⎡
⎢⎢⎣

0 0 0
0 0 0
0 (IN ⊗ P H )H1 0
0 0 0

⎤
⎥⎥⎦

�33 = diag{−I,−I,−(IN ⊗ P),−I }

�41 =
⎡
⎣dn(I2N ⊗ P) Ā 0 dn�P12 + dn�β̄P32

d1(I2N ⊗ P) Ā 0 d1�P12 + d1�β̄P32

lm(I2N ⊗ P) Ā 0 lm�P12 + lm�β̄P32

⎤
⎦

P12 = (I2N ⊗ P)B1 K2, P32 = (I2N ⊗ P)B3 K2

�42 =
⎡
⎣0 dn�β̄P32 0

0 d1�β̄P32 0
0 lm�β̄P32 0

⎤
⎦, d1 = dm − dn

�43 =
⎡
⎣dn PE dn�P21 − dn�β̄P41 dn�β̄P41

d1 PE d1�P21 − d1�β̄P41 d1�β̄P41

lm PE lm�P21 − dn�β̄P41 lm�β̄P41

⎤
⎦

P21 = (I2N ⊗ P)B2 K1, P41 = (I2N ⊗ P)B4 K1

PE = (I2N ⊗ P)Ē H T
2 , 	 = diag{	1,	2, . . . ,	N }

�51 =
⎡
⎣0 0 dn�ρP32

0 0 d1�ρP32

0 0 lm�ρP32

⎤
⎦, �52 =

⎡
⎣0 dn�ρP32 0

0 d1�ρP32 0
0 lm�ρP32 0

⎤
⎦

�53 =
⎡
⎣0 −dn�ρP41 dn�ρP41

0 −d1�ρP41 d1�ρP41

0 −dn�ρP41 lm�ρP41

⎤
⎦

�44 = diag
� − (I2N ⊗ P)R−1

1 (I2N ⊗ P),

− (I2N ⊗ P)R−1
2 (I2N ⊗ P),

− (I2N ⊗ P)R−1
3 (I2N ⊗ P)

�
�55 = �44, β̄ = diag{β̃, β̃}
β̃ = diag{β̄1, . . . , β̄N }, ρi =

�
β̄i(1 − β̄i)

ρ = diag{ρ̃, ρ̃}, ρ̃ = diag{ρ1, . . . , ρN }.

Proof: See Appendix A.
Sufficient conditions are obtained in Theorem 1 to ensure

the asymptotic mean-square stability of the system (18). In the
following, the controller gain of the learning-based event-
triggered AGVs with deception attacks will be derived in
Theorem 2 based on the result of Theorem 1.

Theorem 2: For given scalar β̄i ∈ (0, 1), positive scalars
σ i

a , μ, ν, dn , dm , lm , �, e j , the system (18) is asymptotically
stable in the mean-square sense, if there exist positive definite
matrices Q̃ j , R̃ j , X , 	̃i (i ∈ J , j = 1, 2, 3) and matrices Y
Ñ2, Ñ3 with appropriate dimensions such that the following
linear matrix inequalities hold:

�̃ =

⎡
⎢⎢⎢⎢⎣
�̃11 ∗ ∗ ∗ ∗
�̃21 �̃22 ∗ ∗ ∗
�̃31 �̃32 �̃33 ∗ ∗
�̃41 �̃42 �̃43 �̃44 ∗
�̃51 �̃52 �̃53 0 �̃55

⎤
⎥⎥⎥⎥⎦ < 0 (22)

�
R̃2 ∗
Ñ2 R̃2

�
> 0,

�
R̃3 ∗
Ñ3 R̃3

�
> 0 (23)

where

�̃11 =
⎡
⎣ �̄1 ∗ ∗

R̃1 −Q̃1 − R̃1 − R̃2 ∗
�Y T

2 BT
2 + �Y T

2 BT
3 β̄ R̃2 + Ñ2 �̄2

⎤
⎦

�̄1 = ĀX2 + X2 ĀT + Q̃1 + Q̃2 + Q̃3 − R̃1 − R̃3

�̄2 = −2R̃2 − Ñ2 − ÑT
2 + 2

μ
H T

1 LT	LH1

�̃21 =
⎡
⎣ 0 −Ñ2 R̃2 + Ñ2

�Y T
2 BT

3 β̄ + R̃3 + Ñ3 0 0
−Ñ3 0 0

⎤
⎦

�̃22 =
⎡
⎣−Q̃2 − R̃2 ∗ ∗

0 �̄3 ∗
0 R̃3 + Ñ3 −Q̃3 − R̃3

⎤
⎦

�̄3 = −2R̃3 − Ñ3 − ÑT
3 + θ2 H T

1 X1 H1

+ H T
1 (IN ⊗ H T )X1(IN ⊗ H )H1

�̃31 =

⎡
⎢⎢⎣

H2 ĒT 0 0
�Y T

1 BT
2 − �Y T

1 BT
4 β̄ −σa	̃LH1 0

�Y T
1 BT

4 β̄ 0 0
νH2 X2 0 0

⎤
⎥⎥⎦

�̃32 =

⎡
⎢⎢⎣

0 0 0
0 0 0
0 (IN ⊗ H )H1X2 0
0 0 0

⎤
⎥⎥⎦

�̃33 = diag{−I,−I,−X1,−I }
	̃ = diag{	̃1, 	̃2, . . . , 	̃N }
σa = diag

�
I2 ⊗ σ 1

a , I2 ⊗ σ 2
a , . . . , I2 ⊗ σ N

a

�
�̃41 =

⎡
⎣dn ĀX2 0 dn�B1Y2 + dn�β̄B3Y2

d1 ĀX2 0 d1�B1Y2 + d1�β̄B3Y2

lm ĀX2 0 lm�B1Y2 + lm�β̄B3Y2

⎤
⎦

�̃42 =
⎡
⎣0 dn�β̄B3Y2 0

0 d1�β̄B3Y2 0
0 lm�β̄B3Y2 0

⎤
⎦, d1 = dm − dn

�̃43 =
⎡
⎣dn Ē H T

2 dn�B2Y1 − dn�β̄B4Y1 dn�β̄B4Y1

d1 Ē H T
2 d1�B2Y1 − d1�β̄B4Y1 d1�β̄B4Y1

lm Ē H T
2 lm�B2Y1 − dn�β̄B4Y1 lm�β̄B4Y1

⎤
⎦

�̃51 =
⎡
⎣0 0 dn�ρB3Y2

0 0 d1�ρB3Y2

0 0 lm�ρB3Y2

⎤
⎦, �̃52 =

⎡
⎣0 dn�ρB3Y2 0

0 d1�ρB3Y2 0
0 lm�ρB3Y2 0

⎤
⎦

�̃53 =
⎡
⎣0 −dn�ρB4Y1 dn�ρB4Y1

0 −d1�ρB4Y1 d1�ρB4Y1

0 −dn�ρB4Y1 lm�ρB4Y1

⎤
⎦

�̃44 = diag
� − 2γ1 X2 + γ 2

1 R̃1,−2γ2 X2 + γ 2
2 R̃2,

2γ3 X2 + γ 2
3 R̃3

�
�̃55 = �̃44, H1 = [I2N 0], H2 = [0 I2N ]

Y1 = IN ⊗ Y, Y2 = I2N ⊗ Y

X1 = IN ⊗ X, X2 = I2N ⊗ X

β̄ = diag{β̃, β̃}, β̃ = diag{β̄1, . . . , β̄N }, ρi =
�
β̄i(1−β̄i)

ρ = diag{ρ̃, ρ̃}, ρ̃ = diag{ρ1, . . . , ρN }.
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TABLE II

VEHICLE PARAMETERS

Furthermore, the controller gain of the learning-based event-
triggered AGVs is designed as

K = Y X−1. (24)

Proof: According to (Rκ − γ−1
κ (I2N ⊗ P))R−1

κ (Rκ −
γ−1
κ (I2N ⊗ P)) ≥ 0, it yields that

−(I2N ⊗ P)R−1
κ (I2N ⊗ P) ≤ −2γκ(I2N ⊗ P)+ γ 2

κ Rκ

for κ = 1, 2, 3, from which one can know that a new inequality
is hold by replacing the terms −(I2N ⊗ P)R−1

κ (I2N ⊗ P) (κ =
1, 2, 3) in �44 and �55 in Theorem 1 with −2γκ(I2N ⊗ P)+
γ 2
κ Rκ (κ = 1, 2, 3), respectively.
Let X = P−1, X1 = IN ⊗ X , X2 = I2N ⊗ X , �1 =

diag{X2, X2, X2, X2, X2, X2, I, X1, X1, I, X2, X2, X2, X2, X2,
X2, }. Then pre- and post-multiply � in (20) with
�1 and �T

1 . By defining Y = K X , Y2 = I2N ⊗ Y ,
Y1 = IN ⊗ Y , 	̃ = X1	X1, Q̃1 = X2 Q1 X2, Q̃2 = X2 Q2 X2,
Q̃3 = X2 Q3 X2, R̃1 = X2 R1 X2, R̃2 = X2 R2 X2,
R̃3 = X2 R3 X2, Ñ2 = X2 N2 X2, Ñ3 = X2 N3 X2, we can
get �̃ < 0 holds. Similarly, for inequalities in (21), pre- and
post-multiplying them with �2 and �T

2 (�2 = diag{X2, X2}),
respectively, one can know that the inequalities in (23) hold.
On account of the results in Theorem 1, the conclusion
comes that if (20) and (21) hold, the system (18) is
asymptotically stable in the mean square sense. The controller
gain K = Y X−1 follows from Y = K X . That completes the
proof.

IV. SIMULATION EXAMPLES

In this section, we will present a simulation example to
demonstrate the effectiveness of our proposed theoretical
results. Consider AGVs consisting of three vehicles, and the
vehicle parameters utilized in the simulation are given in
Table II.

The 0-th agent in Fig. 4 is the virtual leader of the AGVs
and the communication topology graph of AGVs is shown
in Fig. 4, from which one can get the Laplacian matrix as
follows:

L =
⎡
⎣ 1 −1 0

0 1 −1
−1 −1 2

⎤
⎦.

The initial conditions are chosen by x0 = [0.4 0.5]T , x1 =
[0.5 0.4]T , x2 = [0.3 0.2]T , x3 = [0.2 0.1]T and σ1(0) = 1.6,
σ2(0) = 0.8, σ3(0) = 0.9.

The signals among AGVs are transmitted via the com-
munication network. Assume the lower and upper bound of

Fig. 4. Communication topology graph of AGVs.

the network-induced time delay is dn = 0.01, dm = 0.3,
lm = 0.15.

In the following, two cases are provided for demonstrating
the effectiveness of the designed method, which are based on
the presence or absence of deception attacks.

Case 1: There is no deception attacks on the vehicle
communication networks.

In this situation, we set β̄1 = 0, β̄2 = 0, β̄3 = 0. Let
ν = 0.2, σ 1

a = 1, σ 2
a = 2, σ 3

a = 3, μ = 1, � = 0.1, h = 0.1 s
and γ1 = γ2 = γ3 = 0.5. By solving linear matrix inequalities
in Theorem 2, the following parameters can be easily obtained:

Y = [0.0037 0.0427], X =
�

40.3701 2.1328
2.1328 3.8802

�

K = [−0.0005 0.0113], 	1 =
�−0.6031 0.0853

0.0853 −0.1400

�

	2 =
�−0.0656 −0.0099
−0.0099 −0.7359

�
, 	3 =

�−0.1633 0.0065
0.0065 −0.0906

�
.

Fig. 5 shows simulation results under Case 1. The state
response xi(t), state error ηi (t), i = 1, 2, 3, and the controller
input ui (t) of each vehicle are exhibited, from which one can
see that the designed control strategy can lead to a good control
performance of AGVs when there is no deception attack on
the vehicle communication network.

Case 2: There are intermittent deception attacks on the
vehicle communication network.

Under this scenario, we assume that β̄1 = 0.3, β̄2 = 0.25,
β̄3 = 0.4, and the attacks satisfy inequality (14) with H =
diag{0.25, 0.15} for θ = 0. Let ν = 0.2, σ 1

a = 1, σ 2
a = 2,

σ 3
a = 3, μ = 1, � = 0.1, h = 0.1 s and γ1 = γ2 = γ3 = 0.5.

By solving linear matrix inequalities in Theorem 2, one can
obtain that

Y = [0.0035 0.0472], X =
�

40.3470 2.1288
2.1288 3.8811

�

K = [−0.0006 0.0125], 	1 =
�−0.6030 0.0852

0.0852 −0.1463

�

	2 =
�−0.0651 −0.0093
−0.0093 −0.7523

�
, 	3 =

�−0.1656 0.0052
0.0052 −0.0929

�
.

Figs. 6–9 present path tracking results of networked AGVs
under Case 2. Fig. 6 depicts the state response xi(t), the
path tracking error ηi(t), and the controller input ui(t) of
each vehicles for i = 1, 2, 3, respectively. The distribution
of deception attacks that satisfy (14) is shown in Fig. 7. From
Fig. 6, it can be concluded that the path tracking of AGVs
under this intermittent deception attacks can also perform well.
Fig. 8 gives the threshold of each learning-based ETM σi(t)
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Fig. 5. State response xi (t), state error ηi (t), and controller input ui (t)
(i = 1, 2, 3) under Case 1.

Fig. 6. State response xi (t), state error ηi (t), and controller input ui (t)
(i = 1, 2, 3) under Case 2.

Fig. 7. The distribution of β1(t) with β̄1 = 0.3, β2(t) with β̄2 = 0.25, and
β3(t) with β̄3 = 0.4 under Case 2.

(i = 1, 2, 3). Fig. 9 exhibits the release time intervals of three
vehicles with the proposed learning-based ETM, respectively,
from which one can see that a large amount of sampling
data is dropped out before releasing into the network, thereby
relieving the burden of limited network bandwidth.

Remark 8: From Fig. 8, one can see that the learning-
based triggering threshold σi (t) (i = 1, 2, 3) is a self-learning
procedure, and finally converges to a constant when the system
is stable. Compared to the literature [23] with a consist
threshold, the threshold σi (t) in this study can dynamically
adjusted based on the releasing instant, vehicle state, along
with itself state. In this example, if one gives the initial
parameters σ1(0) = 1.6, σ2(0) = 0.8, σ3(0) = 0.9 and
σ 1

a = 1, σ 2
a = 2, σ 3

a = 3, then σ1(t), σ2(t), and σ3(t)
converge to 1.627, 0.807, and 0.9102, respectively. In this case
of σ1(t) = 1.627, σ2(t) = 0.807, and σ3(t) = 0.9102, it turns
to be a conventional event-triggered scheme.

Fig. 8. Threshold of each learning-based ETM σi (t) (i = 1, 2, 3) under
Case 2.

Fig. 9. Release instants and release intervals of vehicle 1–3 under Case 2.

TABLE III

NUMBER OF RELEASED DATA PACKETS OF VEHICLE 1 WITHIN 6 s

TABLE IV

NUMBER OF RELEASED DATA PACKETS OF VEHICLE 2 WITHIN 6 s

TABLE V

NUMBER OF RELEASED DATA PACKETS OF VEHICLE 3 WITHIN 6 s

To further testify the superiority of the proposed learning-
based ETM, a comparison is made among the TTM, the
ETM with a constant threshold (ETM-CT) and our proposed
learning-based ETM.

Tables III–V present the numbers of transmitted data packets
of three vehicles with different sampling period h under the
above three data-triggering mechanism.

By comparing the numbers of released data packets of
three vehicles within 6s (as shown in Tables III–V), one can
summarize that our proposed learning-based ETM can lead to
a lower data requirement for secure path tracking of networked
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AGVs with a certain level of control performance, which
indicates that the implementation of learning-based ETM in
this study can effectively economize the limited bandwidth.

V. CONCLUSION

In this article, the problem of secure path tracking control
of networked AGVs subject to deception attacks has been
investigated by using a learning-based ETM. Each vehicle
of AGVs is presumed as an agent, and the information
interaction among vehicles is implemented via communication
networks. To save network resources, the learning-based ETM,
whose threshold is dependent on each vehicle state of AGVs,
has been developed. In addition, the influences of deception
attacks on the vehicle communication network are considered.
Then, a new secure control strategy has been proposed for
networked AGVs considering deception attacks. Through the
use of Lyapunov stability theory and linear matrix inequality
technique, sufficient conditions to ensure the stability of AGVs
are obtained, and the controller gain is designed as well.
Finally, the validity of the theoretical results is manifested
through a simulated example. In the future, the attack detection
and defense will be considered to improve the performance of
networked AGVs subject to cyberattacks.

APPENDIX A
PROOF OF THEOREM 1

Consider the following Lyapunov-Krasovskii functional for
system (18):

V (t) = δT (t)(I2N ⊗ P)δ(t) +
� t

t−dn

δT (v)Q1δ(v)dv

+
� t

t−dm

δT (v)Q2δ(v)dv +
� t

t−lm

δT (v)Q3δ(v)dv

+ dn

� 0

−dn

� t

t+r
δ̇T (v)R1δ̇(v)dvdr

+ (dm − dn)

� −dn

−dm

� t

t+r
δ̇T (v)R2δ̇(v)dvdr

+ lm

� 0

−lm

� t

t+r
δ̇T (v)R3δ̇(v)dvdr.

By calculating the derivation and mathematical expectation
of V (t), we can obtain that

E{V̇ (t)}
= 2δT (t)(I2N ⊗ P)δ̇(t)+ δT (t)(Q1 + Q2 + Q3)δ(t)

− δT (t − dn)Q1δ(t − dn)− δT (t − dm)Q2δ(t − dm)

− δT (t − lm)Q3δ(t − lm)− lm

� t

t−lm

δ̇T (v)R3δ̇(v)dv

− dn

� t

t−dn

δ̇T (v)R1δ̇(v)dv + E{δ̇T (t)Rδ̇(t)}

− (dm − dn)

� t

t−dm

δ̇T (v)R2δ̇(v)dv (25)

where E{δ̇T (t)Rδ̇(t)} = BT
1 (t)RB1(t) + ρ2BT

2 (t)RB2(t),
wherein R = d2

n R1 + (dm − dn)
2 R2 + l2

m R3, B1(t) = Āδ(t)+
Ē F(x(t), t)+�B1 K2δ(t −d(t))+�B2 K1
(t)+�β̄B3K2[δ(t −

d(t))+δ(t−l(t))]−�β̄B4 K1
(t)+�β̄B4 K1ξ(t−l(t)), B2(t) =
�B3 K2(δ(t−d(t))+δ(t−l(t)))+�B4 K1ξ(t−l(t))−�B4 K1
(t).

From Assumption 2, it follows that

ν2δT (t)H T
2 H2δ(t)− FT (x(t), t)H T

2 H2 F(x(t), t) ≥ 0. (26)

According to (9) and (10), it has

−[(LH1δ(t − d(t)))T σa	
(t)+ 
T (t)σa	LH1δ(t − d(t))]
+ 2

μ
(LH1δ(t − d(t)))T	LH1δ(t − d(t)) ≤ 0. (27)

It follows from (14) that

θ2[H1δ(t − l(t))]T (IN ⊗ P)H1δ(t − l(t))− � ≥ 0 (28)

where � = [ξ(t−l(t))−(IN ⊗H )H1δ(t−l(t))]T (IN ⊗P)[ξ(t−
l(t))− (IN ⊗ H )H1δ(t − l(t))], H1 = [I2N 0], H2 = [0 I2N ].

Combining (25)–(28), then applying the Jensen’s inequality
[27] and Schur complement yields that

E{V̇ (t)} ≤ � T (t)��(t) (29)

where �(t) = [δT (t) δT (t − dn) δT (t − d(t)) δT (t −
dm) δ

T (t − l(t)) δT (t − lm) (H2 F(x(t), t))T 
T (t) ξT (t −
l(t))]T . Then, one can know that (20) and (21) are sufficient
conditions to ensure E{V̇ (t)} < 0, which implies that the
networked AGVs are asymptotically stable in the mean-square
sense. That completes the proof.
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